
Sui Sentinel
Security Assessment

January 29th, 2026 — Prepared by OtterSec

Michał Bochnak embe221ed@osec.io

Andreas Mantzoutas andreas@osec.io

Sangsoo Kang sangsoo@osec.io

Thiago Tavares thitav@osec.io

mailto:embe221ed@osec.io
mailto:andreas@osec.io
mailto:sangsoo@osec.io
mailto:thitav@osec.io


Table of Contents

Executive Summary 3

Overview 3

Key Findings 3

Scope 4

Findings 5

Vulnerabilities 6

OS-SST-ADV-00 | Possibility to Utilize Arbitrary Enclaves 8

OS-SST-ADV-01 | Extending Withdrawal Lock through Zero-Value Funding 9

OS-SST-ADV-02 | Unbounded Agent Registry Growth 10

OS-SST-ADV-03 | Failure to Timelock Cost and Agent Prompt Updates 11

OS-SST-ADV-04 | Absence of Signature Expiration Checks 12

OS-SST-ADV-05 | Front-Running Agent Registration 13

OS-SST-ADV-06 | Potential to Bypass Withdrawal Lock Period 14

OS-SST-ADV-07 | Unauthenticated Prompt in Events 15

OS-SST-ADV-08 | Unauthorized Capability Creation Risk 16

OS-SST-ADV-09 | Improper Enclave Destruction Authorization Logic 17

General Findings 18

OS-SST-SUG-00 | Code Refactoring 19

OS-SST-SUG-01 | Code Maturity 20

OS-SST-SUG-02 | Code Optimization 22

Appendices

Vulnerability Rating Scale 24

© 2026 Otter Audits LLC. All Rights Reserved. 1 / 25



Sui Sentinel Audit

TABLE OF CONTENTS

Procedure 25

© 2026 Otter Audits LLC. All Rights Reserved. 2 / 25



01 — Executive Summary

Overview

Sui Foundation engaged OtterSec to assess the sentinelsentinel program. This assessment was conducted

between December 6th, 2025 and January 21st, 2026. For more information on our auditing methodology,

refer to Appendix B.

Key Findings

We produced 13 findings throughout this audit engagement.

In particular, we identified a critical vulnerability where the function responsible for consuming a prompt

accepts signatures from any registered enclave without verifying that it is the authorized enclave (OS-

SST-ADV-00), and another high-risk issue concerning the unbounded growth of the agent list, enabling

an attacker to register multiple agents to inflate the Agent Registry object until it exceeds the maximum

object size limit, resulting in further writes to fail (OS-SST-ADV-02).

Additionally, a call to fund an agent with zero SUI will reset the withdrawal lock timestamp without adding

funds, allowing an attacker to block the creator from withdrawing, creating a denial-of-service scenario

(OS-SST-ADV-01).

We also recommended refactoring the code to improve functionality and mitigate potential issues (OS-

SST-SUG-00), and made suggestions to ensure adherence to coding best practices for better clarity and

maintainability (OS-SST-SUG-01). We further advised optimizing the codebase by removing redundant

logic, avoiding the emission of unnecessary events, and reclaiming available storage rebates (OS-SST-

SUG-02).

We further confirm that all 13 reported issues, including both vulnerabilities and general findings, have

been properly addressed and resolved by the team, with zero outstanding issues remaining.

© 2026 Otter Audits LLC. All Rights Reserved. 3 / 25



02 — Scope

The source code was delivered to us in a Git repository at https://github.com/sui-sentinel/contracts. This

audit was performed against commit 0565a2a.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

sentinel

It enables a gamified, on-chain security challenge where Defenders

deploy and fund AI “Sentinel” agents, and Attackers pay to attempt

social-engineering attacks against them.

© 2026 Otter Audits LLC. All Rights Reserved. 4 / 25

https://github.com/sui-sentinel/contracts
https://github.com/sui-sentinel/contracts/commit/0565a2ae4e7c85a6cbb564314dae10bb8dca9197


03 — Findings

Overall, we reported 13 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 1

HIGHHIGH 3

MEDIUMMEDIUM 2

LOWLOW 4

INFOINFO 3

© 2026 Otter Audits LLC. All Rights Reserved. 5 / 25



04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities identified during our audit. These vulnerabilities

have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-SST-ADV-00 CRITICALCRITICAL RESOLVEDRESOLVED

consume_promptconsume_prompt accepts signatures from any

registered enclave without verifying that it is the

authorized enclave. Additionally, enclave up-

grades may leave multiple valid enclaves active

with no defined canonical executor.

OS-SST-ADV-01 HIGHHIGH RESOLVEDRESOLVED

A permissionless fund_agentfund_agent call with zero

SUISUI will reset the withdrawal lock timestamp

without adding funds, allowing an attacker to

block the creator from withdrawing.

OS-SST-ADV-02 HIGHHIGH RESOLVEDRESOLVED

agent_listagent_list grows unbounded as a

vector<String>vector<String> , enabling an attacker

to register multiple agents to inflate the

AgentRegistryAgentRegistry object until it exceeds

max_move_object_sizemax_move_object_size , resulting in further
writes to fail.

OS-SST-ADV-03 HIGHHIGH RESOLVEDRESOLVED

Immediate, unbounded updates to agent

prompts and costs allow the creator to change

behavior or price out users after funds are

committed, enabling value capture and denial-

of-service.

OS-SST-ADV-04 MEDIUMMEDIUM RESOLVEDRESOLVED

Signatures are not time-bound, allowing attack-

ers to submit a signature at a later time when

the agent has accumulated more funds.

© 2026 Otter Audits LLC. All Rights Reserved. 6 / 25



Sui Sentinel Audit 03 — Findings

OS-SST-ADV-05 MEDIUMMEDIUM RESOLVEDRESOLVED

The agent registration signature is not bound

to the creator address, allowing an attacker to

front-run the transaction and steal ownership

of the agent.

OS-SST-ADV-06 LOWLOW RESOLVEDRESOLVED

If an agent is never funded,

last_funded_timestamplast_funded_timestamp stays at zero,

enabling the creator to immediately withdraw

any rewards and bypass the intended lock

period.

OS-SST-ADV-07 LOWLOW RESOLVEDRESOLVED

The contract does not validate the promptprompt
field in consume_promptconsume_prompt , allowing at-

tackers to emit misleading prompt data in the

PromptConsumedPromptConsumed event.

OS-SST-ADV-08 LOWLOW RESOLVEDRESOLVED

Unauthorized parties may create CapCap objects

utilizing the same type TT , allowing them to

register or modify enclaves without permission.

OS-SST-ADV-09 LOWLOW RESOLVEDRESOLVED

Enclave destruction is authorized only by ver-

sion comparison, allowing a different configu-

ration with a higher version to delete unrelated

enclaves.

© 2026 Otter Audits LLC. All Rights Reserved. 7 / 25



Sui Sentinel Audit 03 — Findings

Possibility to Utilize Arbitrary Enclaves CRITICALCRITICAL OS-SST-ADV-00

Description

consume_promptconsume_prompt fails to verify the relationship between the AgentAgent and the EnclaveEnclave . The contract
only checks that a signature is valid for a provided Enclave object, thus, as long as the attacker supplies

any Enclave<T>Enclave<T> object with a valid public key, the signature check passes, allowing an attacker to utilize

a signature generated by a fake EnclaveEnclave to win. Additionally, when enclave configurations are updated

and multiple enclaves are present, it is not clearly defined which enclave will be selected for execution.

Remediation

Ensure that the provided EnclaveEnclave is authorized, and explicitly specify the EnclaveEnclave ID in the protocol

configuration to explicitly identify the enclave to be utilized.

Patch

Resolved in e8165ef and 10ee5b7.

© 2026 Otter Audits LLC. All Rights Reserved. 8 / 25

https://github.com/sui-sentinel/contracts/commit/e8165efa7c0a2e5a0c8222441021ce9017b5c773
https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292


Sui Sentinel Audit 03 — Findings

ExtendingWithdrawal Lock through Zero-Value Funding HIGHHIGH OS-SST-ADV-01

Description

fund_agentfund_agent is permissionless and accepts zero-value Coin<SUI>Coin<SUI> . Since every call to fund_agentfund_agent un-

conditionally updates agent.last_funded_timestampagent.last_funded_timestamp , an attacker may pass a zero-value Coin<SUI>Coin<SUI>
to reset last_funded_timestamplast_funded_timestamp without adding funds. This extends the 14-day withdrawal lock even

though no economic value is deposited. Thus, by repeatedly calling fund_agentfund_agent , the attacker may indef-
initely block the creator from withdrawing funds by preventing them from calling withdraw_from_agentwithdraw_from_agent
, resulting in a denial-of-service scenario.

>_ contracts/app/sources/sentinel.move rust

public fun fund_agent(agent: &mut Agent, payment: Coin<SUI>, clock: &Clock, ctx: &TxContext) {
let amount = coin::value(&payment);
let balance_to_add = coin::into_balance(payment);
balance::join(&mut agent.balance, balance_to_add);

// Update last funded timestamp
let current_time = clock::timestamp_ms(clock);
agent.last_funded_timestamp = current_time;

let unlock_timestamp = current_time + WITHDRAWAL_LOCK_PERIOD_MS;
[...]

}

Remediation

Implement proper access control logic for fund_agentfund_agent , restricting anyone other than agent_creatoragent_creator
from calling it.

Patch

Resolved in 72e7e2d.

© 2026 Otter Audits LLC. All Rights Reserved. 9 / 25

https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f


Sui Sentinel Audit 03 — Findings

Unbounded Agent Registry Growth HIGHHIGH OS-SST-ADV-02

Description

In AgentRegistryAgentRegistry , agent_listagent_list is a vector<String>vector<String> stored on-chain, resulting in AgentRegistryAgentRegistry
object to grow linearly with each new agent registration. An attacker may exploit this by registering a

large number of agents, inflating the object’s size until it reaches max_move_object_sizemax_move_object_size . Once this
limit is hit, any further writes to the registry will fail, effectively freezing agent registration.

Remediation

Remove agent_listagent_list since agent is already stored in a registry table.

Patch

Resolved in 59f6b5e.

© 2026 Otter Audits LLC. All Rights Reserved. 10 / 25

https://github.com/sui-sentinel/contracts/commit/59f6b5e91750d72874a4f28ca5cce94add6d0a54


Sui Sentinel Audit 03 — Findings

Failure to Timelock Cost and Agent Prompt Updates HIGHHIGH OS-SST-ADV-03

Description

Both update_agent_promptupdate_agent_prompt and update_agent_costupdate_agent_cost in sentinelsentinel allow the agent creator to make

immediate, unilateral changes after users have already committed funds.

update_agent_costupdate_agent_cost allows the creator to increase the cost per message instantly and without any upper

bound. After sufficient rewards accumulate, the creator may set an extremely high cost, preventing any

further interactions with the agent. This effectively bricks the agent, blocking attackers from competing to

claim the reward.

>_ contracts/app/sources/sentinel.move rust

/// Update agent cost per message (only by creator)
public fun update_agent_cost(agent: &mut Agent, new_cost: u64, ctx: &TxContext) {

assert!(agent.creator == ctx.sender(), ENotAuthorized);
agent.cost_per_message = new_cost;

}

Similarly, update_agent_promptupdate_agent_prompt allows the agent creator to modify the system prompt immediately

and without any delay. Because the system prompt directly influences how the agent responds, a creator

can wait until attackers have committed funds and then update the prompt to make the agent trivially

solvable or deterministically fail, ensuring the creator (or a colluding address) may win and extract the

accumulated rewards.

>_ contracts/app/sources/sentinel.move rust

/// Update agent system prompt (only by creator)
public fun update_agent_prompt(agent: &mut Agent, new_prompt: String, ctx: &TxContext) {

assert!(agent.creator == ctx.sender(), ENotAuthorized);
agent.system_prompt = new_prompt;

}

Remediation

Enforce a timelock on cost updates and prompt updates in update_agent_costupdate_agent_cost and

update_agent_promptupdate_agent_prompt , respectively. Also, add protocol-level bounds on cost_per_messagecost_per_message in

update_agent_costupdate_agent_cost .

Patch

Resolved in 04f3adb and 432b856.

© 2026 Otter Audits LLC. All Rights Reserved. 11 / 25

https://github.com/sui-sentinel/contracts/commit/04f3adbb5a672a66219385d680d3d507d7d8a278
https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd


Sui Sentinel Audit 03 — Findings

Absence of Signature Expiration Checks MEDIUMMEDIUM OS-SST-ADV-04

Description

The contract accepts enclave signatures without enforcing any timestamp or expiry checks, allowing them

to remain valid indefinitely. Thus, a user may obtain a valid signature and delay submission until the agent

accumulates more funds. Once submitted, the stale signature still verifies and will drain newly added

rewards.

Remediation

Ensure signatures expire after a certain period of time.

Patch

Resolved in e8165ef.

© 2026 Otter Audits LLC. All Rights Reserved. 12 / 25

https://github.com/sui-sentinel/contracts/commit/e8165efa7c0a2e5a0c8222441021ce9017b5c773


Sui Sentinel Audit 03 — Findings

Front-Running Agent Registration MEDIUMMEDIUM OS-SST-ADV-05

Description

RegisterAgentResponseRegisterAgentResponse does not include the creator address, so the enclave’s signature is not bound

to a specific caller. Because the signed payload only includes agent_idagent_id , cost_per_messagecost_per_message , and

system_promptsystem_prompt , any user may frontrun a register_agentregister_agent call and submit their own register_agentregister_agent

transaction utilizing the same fields to effectively steal the agent_idagent_id and become the agent’s creator,

enabling them to update the prompt and the cost per message as they wish.

>_ contracts/app/sources/sentinel.move rust

public struct RegisterAgentResponse has copy, drop {
agent_id: String,
cost_per_message: u64,
system_prompt: String,
is_defeated: bool

}

Remediation

Include the intended creator address in RegisterAgentResponseRegisterAgentResponse and verify that it matches ctx.senderctx.sender
during register_agentregister_agent .

Patch

Resolved in 72e7e2d.

© 2026 Otter Audits LLC. All Rights Reserved. 13 / 25

https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f


Sui Sentinel Audit 03 — Findings

Potential to BypassWithdrawal Lock Period LOWLOW OS-SST-ADV-06

Description

When an agent is created, last_funded_timestamplast_funded_timestamp is left at its default value (0) in register_agentregister_agent
unless fund_agentfund_agent is explicitly called. As a result, if the agent later receives funds through other flows

(for example, if someone submits a request for attack), the withdrawal logic in withdraw_from_agentwithdraw_from_agent
becomes unsafe.

>_ contracts/app/sources/sentinel.move rust

public fun register_agent<T>(
registry: &mut AgentRegistry,
agent_id: String,
[...]
enclave: &Enclave<T>,
ctx: &mut TxContext,

) {
[...]
let agent = Agent {

id: object::new(ctx),
agent_id,
creator,
cost_per_message,
system_prompt,
balance: balance::zero(),
last_funded_timestamp: 0, // Initialize to 0

};
[...]

}

The function computes time_since_last_fundingtime_since_last_funding by subtracting the

agent.last_funded_timestampagent.last_funded_timestamp from current_timecurrent_time to determine if it met the

WITHDRAWAL_LOCK_PERIOD_MSWITHDRAWAL_LOCK_PERIOD_MS . However, with last_funded_timestamp = 0last_funded_timestamp = 0 , this check trivially

passes. This allows the agent creator to immediately withdraw newly acquired funds, bypassing the

intended lock period.

Remediation

Initialize last_funded_timestamplast_funded_timestamp to the current time (at which the registration is done) at agent

registration so that the withdrawal lock applies even before the first explicit funding.

Patch

Resolved in 72e7e2d.

© 2026 Otter Audits LLC. All Rights Reserved. 14 / 25

https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f


Sui Sentinel Audit 03 — Findings

Unauthenticated Prompt in Events LOWLOW OS-SST-ADV-07

Description

In the current flow, the enclave signature only covers the ConsumePromptResponseConsumePromptResponse fields. The

promptprompt string is not validated, enabling an attacker to supply an arbitrary promptprompt value when calling

sentinel::consume_promptsentinel::consume_prompt , which will consequently be emitted by the PromptConsumedPromptConsumed event.

This compromises the integrity of the PromptConsumedPromptConsumed event.

Remediation

Verify the correct prompt is supplied in consume_promptconsume_prompt .

Patch

Resolved in ae5d5ad.

© 2026 Otter Audits LLC. All Rights Reserved. 15 / 25

https://github.com/sui-sentinel/contracts/commit/ae5d5adde965c2468e1366e1f5bfb96421c4d516


Sui Sentinel Audit 03 — Findings

Unauthorized Capability Creation Risk LOWLOW OS-SST-ADV-08

Description

enclave::new_capenclave::new_cap currently allows anyone with access to a type TT to create a Cap<T>Cap<T> . This is

risky because the CapCap object grants authority to create and modify EnclaveConfigEnclaveConfig and register

new enclaves. A malicious actor may re-utilize the same type TT as a legitimate module to generate

unauthorized caps, enabling them to create enclave configurations or register enclaves without permission.

>_ contracts/enclave/sources/enclave.move rust

/// Create a new `Cap` using a `witness` T from a module.
public fun new_cap<T: drop>(_: T, ctx: &mut TxContext): Cap<T> {

Cap {
id: object::new(ctx),

}
}

Remediation

Require a one-time witness from the module.

Patch

Resolved in 10ee5b7.

© 2026 Otter Audits LLC. All Rights Reserved. 16 / 25

https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292


Sui Sentinel Audit 03 — Findings

Improper Enclave Destruction Authorization Logic LOWLOW OS-SST-ADV-09

Description

enclave::destroy_old_enclaveenclave::destroy_old_enclave only checks that the supplied configuration has a higher version,

without verifying that the enclave was created from that configuration. Because multiple EnclaveConfigEnclaveConfig
objects may exist, an attacker may create a different configuration, increment its version, and utilize it to

destroy an unrelated enclave. This breaks configuration lineage and allows unauthorized enclave deletion.

Also, outdated enclaves may still be utilized and be deleted by anyone.

>_ contracts/enclave/sources/enclave.move rust

public fun destroy_old_enclave<T>(e: Enclave<T>, config: &EnclaveConfig<T>) {
assert!(e.config_version < config.version, EInvalidConfigVersion);
let Enclave { id, .. } = e;
id.delete();

}

Remediation

Bind each enclave to its creating configuration ID and verify it during destruction. Additionally, restrict

enclave destruction to the enclave owner.

Patch

Resolved in 10ee5b7.

© 2026 Otter Audits LLC. All Rights Reserved. 17 / 25

https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292


05 — General Findings

Here, we present a discussion of general findings identified during our audit. While these findings do not

pose an immediate security impact, they represent anti-patterns and may result in security issues in the

future.

IDID DescriptionDescription

OS-SST-SUG-00
Recommendation to refactor the code to improve functionality and mitigate

potential issues.

OS-SST-SUG-01
Suggestions to ensure adherence to coding best practices for better clarity

and maintainability.

OS-SST-SUG-02
The codebase may be optimized by removing redundant logic, avoiding the

emission of unnecessary events, and reclaiming available storage rebates.

© 2026 Otter Audits LLC. All Rights Reserved. 18 / 25



Sui Sentinel Audit 05 — General Findings

Code Refactoring OS-SST-SUG-00

Description

1. Currently within sentinelsentinel , there are no length checks for the promptprompt and system_promptsystem_prompt
parameters. This may result in arbitrarily large promptprompt and system_promptsystem_prompt , enabling gas

griefing, oversized event emissions, and excessive payloads. Thus, it will be appropriate to add

length validation for promptprompt in consume_promptconsume_prompt , and for system_promptsystem_prompt in register_agentregister_agent

and update_agent_promptupdate_agent_prompt .

2. sentinel::request_attacksentinel::request_attack utilizes tx_context::epochtx_context::epoch which yields a low-entropy nonce

that is shared across all attacksattacks within the same epoch. Since the epoch length is 1 day, switching

to sui::randomsui::random will produce a high-entropy nonce, ensuring uniqueness, thereby improving

security.

>_ contracts/app/sources/sentinel.move rust

public fun request_attack([...]): Attack {
[...]
// Generate nonce using TxContext epoch for uniqueness
let nonce = tx_context::epoch(ctx);
[...]

}

3. Currently in sentinel::consume_promptsentinel::consume_prompt , PromptConsumedPromptConsumed derives success indirectly from

(score > 95 || success)(score > 95 || success) condition, which may diverge from the enclave’s explicit verdict.

Utilize the successsuccess value that is passed in as an argument to consume_promptconsume_prompt .

Remediation

Incorporate the above refactors.

Patch

1. #1 resolved in 432b856.

2. #2 resolved in e8165ef.

3. #3 resolved in ae5d5ad and 432b856.

© 2026 Otter Audits LLC. All Rights Reserved. 19 / 25

https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd
https://github.com/sui-sentinel/contracts/commit/e8165efa7c0a2e5a0c8222441021ce9017b5c773
https://github.com/sui-sentinel/contracts/commit/ae5d5adde965c2468e1366e1f5bfb96421c4d516
https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd


Sui Sentinel Audit 05 — General Findings

Code Maturity OS-SST-SUG-01

Description

1. The function name for enclave::deploy_old_enclave_by_ownerenclave::deploy_old_enclave_by_owner implies version-based safety

checks, but it allows the owner to delete the enclave unconditionally without verifying whether it is

outdated. Thus, it may be renamed to destroy_enclave_by_ownerdestroy_enclave_by_owner for clarity.

>_ contracts/enclave/sources/enclave.move rust

public fun deploy_old_enclave_by_owner<T>(e: Enclave<T>, ctx: &mut TxContext) {
assert!(e.owner == ctx.sender(), EInvalidOwner);
let Enclave { id, .. } = e;
id.delete();

}

2. Utilize a configurable score threshold instead of hardcoding it to 95 in sentinel::consume_promptsentinel::consume_prompt
to improve maintainability.

>_ contracts/app/sources/sentinel.move rust

public fun consume_prompt<T>([...]) {
[...]
if (score > 95 || success) {

let agent_balance = balance::value(&agent.balance);
[...]

}
[...]

}

3. Utilize an AgentCapAgentCap to centralize authorization around a capability object rather than utilizing

Attack.adminAttack.admin field.

4. Add !is_withdrawal_unlocked!is_withdrawal_unlocked in request_attackrequest_attack to prevent a useless request.

Remediation

Implement the above-mentioned suggestions.

© 2026 Otter Audits LLC. All Rights Reserved. 20 / 25



Sui Sentinel Audit 05 — General Findings

Patch

1. #1 resolved in 10ee5b7.

2. #2 resolved in ae5d5ad.

3. #3 resolved in 72e7e2d.

4. #4 resolved in 4b53f75.

© 2026 Otter Audits LLC. All Rights Reserved. 21 / 25

https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292
https://github.com/sui-sentinel/contracts/commit/ae5d5adde965c2468e1366e1f5bfb96421c4d516
https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f
https://github.com/sui-sentinel/contracts/commit/4b53f756408b2150ac8ef800bae4d06f2165792c


Sui Sentinel Audit 05 — General Findings

Code Optimization OS-SST-SUG-02

Description

1. In sentinel::withdraw_from_agentsentinel::withdraw_from_agent , the logic for checking if 14 days have passed since

last funding may be replaced with an assertion check on is_withdrawal_unlockedis_withdrawal_unlocked to avoid

unnecessary code duplication.

>_ contracts/app/sources/sentinel.move rust

/// Withdraw funds from agent (only by creator, enforces 14-day lock from last funding)
public fun withdraw_from_agent(

agent: &mut Agent,
amount: u64,
clock: &Clock,
ctx: &mut TxContext

): Coin<SUI> {
assert!(agent.creator == ctx.sender(), ENotAuthorized);
assert!(balance::value(&agent.balance) >= amount, EInsufficientBalance);

// Check if 14 days have passed since last funding
let current_time = clock::timestamp_ms(clock);
let time_since_last_funding = current_time - agent.last_funded_timestamp;
assert!(

time_since_last_funding >= WITHDRAWAL_LOCK_PERIOD_MS,
EWithdrawalLocked

);
[...]

}

2. After sentinel::consume_promptsentinel::consume_prompt completes, the AttackAttack object has no further purpose and

should be destroyed instead of just marking it as utilized. Deleting it will reclaim the Sui storage

rebate and prevent unnecessary on-chain state growth.

3. Setter functions should first compare the new value against the current value before applying updates.

This avoids emitting meaningless events when no state change occurs.

4. Simplify the logic by storing only creator fee and protocol fee, and automatically sending the re-

maining amount to the agent, instead of storing all three values and performing additional remainder

calculations.

Remediation

Modify the codebase to include the above optimizations.

© 2026 Otter Audits LLC. All Rights Reserved. 22 / 25



Sui Sentinel Audit 05 — General Findings

Patch

1. #1 resolved in 432b856.

2. #2 resolved in 432b856.

3. #3 resolved in 0a667ff.

4. #4 resolved in 550dc2c.

© 2026 Otter Audits LLC. All Rights Reserved. 23 / 25

https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd
https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd
https://github.com/sui-sentinel/contracts/commit/0a667ff0b800595109f1ce3186a940cd0ac51c3d
https://github.com/sui-sentinel/contracts/commit/550dc2c7fac6b83aa52523b8edfa1815465b832b


A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL
Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM
Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW
Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO
Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2026 Otter Audits LLC. All Rights Reserved. 24 / 25



B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2026 Otter Audits LLC. All Rights Reserved. 25 / 25


	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-SST-ADV-00  | Possibility to Utilize Arbitrary Enclaves
	[8.75em][l]OS-SST-ADV-01  | Extending Withdrawal Lock through Zero-Value Funding
	[8.75em][l]OS-SST-ADV-02  | Unbounded Agent Registry Growth
	[8.75em][l]OS-SST-ADV-03  | Failure to Timelock Cost and Agent Prompt Updates
	[8.75em][l]OS-SST-ADV-04  | Absence of Signature Expiration Checks
	[8.75em][l]OS-SST-ADV-05  | Front-Running Agent Registration
	[8.75em][l]OS-SST-ADV-06  | Potential to Bypass Withdrawal Lock Period
	[8.75em][l]OS-SST-ADV-07  | Unauthenticated Prompt in Events
	[8.75em][l]OS-SST-ADV-08  | Unauthorized Capability Creation Risk
	[8.75em][l]OS-SST-ADV-09  | Improper Enclave Destruction Authorization Logic

	General Findings
	[8.75em][l]OS-SST-SUG-00  | Code Refactoring
	[8.75em][l]OS-SST-SUG-01  | Code Maturity
	[8.75em][l]OS-SST-SUG-02  | Code Optimization

	Appendices
	Vulnerability Rating Scale
	Procedure


