GO otterSec

Security Assessment

January 29th, 2026 — Prepared by OtterSec

Michat Bochnak

Andreas Mantzoutas

Sangsoo Kang

Thiago Tavares

embe22led@osec.io

andreas@osec.io

sangsoo@osec.io

thitav@osec.io

mailto:embe221ed@osec.io
mailto:andreas@osec.io
mailto:sangsoo@osec.io
mailto:thitav@osec.io

Table of Contents

Executive Summary 3
Overview 3
Key Findings 3

Scope 4

Findings 5

Vulnerabilities 6
0S-SST-ADV-00 | Possibility to Utilize Arbitrary Enclaves 8
0S-SST-ADV-01 | Extending Withdrawal Lock through Zero-Value Funding 9
0S-SST-ADV-02 | Unbounded Agent Registry Growth 10
0S-SST-ADV-03 | Failure to Timelock Cost and Agent Prompt Updates 11
0S-SST-ADV-04 | Absence of Signature Expiration Checks 12
0S-SST-ADV-05 | Front-Running Agent Registration 13
0S-SST-ADV-06 | Potential to Bypass Withdrawal Lock Period 14
0S-SST-ADV-07 | Unauthenticated Prompt in Events 15
0S-SST-ADV-08 | Unauthorized Capability Creation Risk 16
0S-SST-ADV-09 | Improper Enclave Destruction Authorization Logic 17

General Findings 18
0S-SST-SUG-00 | Code Refactoring 19
0S-SST-SUG-01 | Code Maturity 20
0S-SST-SUG-02 | Code Optimization 22

Appendices

Vulnerability Rating Scale 24

© 2026 Otter Audits LLC. All Rights Reserved. 1/25

Sui Sentinel Audit

TABLE OF CONTENTS

Procedure 25

© 2026 Otter Audits LLC. All Rights Reserved. 2/25

01 — Executive Summary

Overview

Sui Foundation engaged OtterSec to assess the sentinel program. This assessment was conducted
between December 6th, 2025 and January 21st, 2026. For more information on our auditing methodology,
refer to Appendix B.

Key Findings
We produced 13 findings throughout this audit engagement.

In particular, we identified a critical vulnerability where the function responsible for consuming a prompt
accepts signatures from any registered enclave without verifying that it is the authorized enclave (OS-
SST-ADV-00), and another high-risk issue concerning the unbounded growth of the agent list, enabling
an attacker to register multiple agents to inflate the Agent Registry object until it exceeds the maximum
object size limit, resulting in further writes to fail (OS-SST-ADV-02).

Additionally, a call to fund an agent with zero SUI will reset the withdrawal lock timestamp without adding
funds, allowing an attacker to block the creator from withdrawing, creating a denial-of-service scenario
(OS-SST-ADV-01).

We also recommended refactoring the code to improve functionality and mitigate potential issues (0OS-
SST-SUG-00), and made suggestions to ensure adherence to coding best practices for better clarity and
maintainability (OS-SST-SUG-01). We further advised optimizing the codebase by removing redundant
logic, avoiding the emission of unnecessary events, and reclaiming available storage rebates (0S-SST-
SUG-02).

We further confirm that all 13 reported issues, including both vulnerabilities and general findings, have
been properly addressed and resolved by the team, with zero outstanding issues remaining.

© 2026 Otter Audits LLC. All Rights Reserved. 3/25

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/sui-sentinel/contracts. This
audit was performed against commit 0565a2a.

A brief description of the program is as follows:

Name Description

It enables a gamified, on-chain security challenge where Defenders
sentinel deploy and fund Al "Sentinel” agents, and Attackers pay to attempt
social-engineering attacks against them.

© 2026 Otter Audits LLC. All Rights Reserved. 425

https://github.com/sui-sentinel/contracts
https://github.com/sui-sentinel/contracts/commit/0565a2ae4e7c85a6cbb564314dae10bb8dca9197

03 — Findings

Overall, we reported 13 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will
aid in mitigating future vulnerabilities.

Severity Count

CRITICAL 1

HIGH

MEDIUM
LOW

INFO

© 2026 Otter Audits LLC. All Rights Reserved. 5/25

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities identified during our audit. These vulnerabilities
have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

consume_prompt accepts signatures from any
registered enclave without verifying that it is the

0OS-SST-ADV-00 CRITICAL RESOLVED ©® authorized enclave. Additionally, enclave up-
grades may leave multiple valid enclaves active
with no defined canonical executor.

A permissionless fund_agent call with zero
SUI will reset the withdrawal lock timestamp
without adding funds, allowing an attacker to
block the creator from withdrawing.

OS-SST-ADV-01 HIGH RESOLVED ®

agent_list grows unbounded as a
vector<String> , enabling an attacker
to register multiple agents to inflate the
OS-SST-ADV-02 HIGH RESOLVED ® - . o
AgentRegistry object until it exceeds
max_move_object_size , resulting in further

writes to fail.

Immediate, unbounded updates to agent
prompts and costs allow the creator to change

OS-SST-ADV-03 HIGH RESOLVED ® behavior or price out users after funds are
committed, enabling value capture and denial-
of -service.

Signatures are not time -bound, allowing attack -
OS-SST-ADV-04 MEDIUM RESOLVED ® ers to submit a signature at a later time when
the agent has accumulated more funds.

© 2026 Otter Audits LLC. All Rights Reserved. 6/25

Sui Sentinel Audit 03 — Findings

The agent registration signature is not bound
to the creator address, allowing an attacker to
front-run the transaction and steal ownership
of the agent.

OS-SST-ADV-05 MEDIUM RESOLVED ®

If an agent is never funded,
last_funded_timestamp stays at zero,

OS-SST-ADV-06 LOW RESOLVED ® enabling the creator to immediately withdraw
any rewards and bypass the intended lock
period.

The contract does not validate the prompt

field in consume_prompt , allowing at-

OS-SST-ADV-07 LOwW RESOLVED © tackers to emit misleading prompt data in the
PromptConsumed event.

Unauthorized parties may create Cap objects
OS-SST-ADV-08 LOW RESOLVED ® utilizing the same type T , allowing them to
register or modify enclaves without permission.

Enclave destruction is authorized only by ver-
sion comparison, allowing a different configu-
ration with a higher version to delete unrelated
enclaves.

OS-SST-ADV-09 LOW RESOLVED ®

© 2026 Otter Audits LLC. All Rights Reserved. 7125

Sui Sentinel Audit 03 — Findings

Possibility to Utilize Arbitrary Enclaves [CRITICAL 0S-SST-ADV-00

Description

consume_prompt fails to verify the relationship between the Agent and the Enclave . The contract

only checks that a signature is valid for a provided Enclave object, thus, as long as the attacker supplies
any Enclave<T> object with a valid public key, the signature check passes, allowing an attacker to utilize
a signature generated by a fake Enclave to win. Additionally, when enclave configurations are updated
and multiple enclaves are present, it is not clearly defined which enclave will be selected for execution.

Remediation

Ensure that the provided Enclave is authorized, and explicitly specify the Enclave ID in the protocol
configuration to explicitly identify the enclave to be utilized.

Patch

Resolved in e8165ef and 10ee5b7.

© 2026 Otter Audits LLC. All Rights Reserved. 8/25

https://github.com/sui-sentinel/contracts/commit/e8165efa7c0a2e5a0c8222441021ce9017b5c773
https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292

Sui Sentinel Audit 03 — Findings

Extending Withdrawal Lock through Zero-Value Funding HiGH 0S-SST-ADV-01

Description

fund_agent is permissionless and accepts zero-value Coin<SUI>. Since every callto fund_agent un-
conditionally updates agent.last_funded_timestamp, an attacker may pass a zero-value Coin<SUI>
toreset last_funded_timestamp without adding funds. This extends the 14 -day withdrawal lock even
though no economic value is deposited. Thus, by repeatedly calling fund_agent, the attacker may indef-

initely block the creator from withdrawing funds by preventing them from calling withdraw_from_agent
, resulting in a denial-of -service scenario.

>_ contracts/app/sources/sentinel.move RUST

public fun fund_agent(agent: &mut Agent, payment: Coin<SUI>, clock: &Clock, ctx: &TxContext) {
let amount = coin::value(&payment);
let balance_to_add = coin::into_balance(payment);
balance::join(&mut agent.balance, balance_to_add);

let current_time = clock::timestamp_ms(clock);
agent.last_funded_timestamp = current_time;

let unlock_timestamp = current_time + WITHDRAWAL_LOCK_PERIOD_MS;
[...]

Remediation

Implement proper access control logic for fund_agent , restricting anyone other than agent_creator
from calling it.

Patch

Resolved in 72e7e2d.

© 2026 Otter Audits LLC. All Rights Reserved. 9/25

https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f

Sui Sentinel Audit 03 — Findings

Unbounded Agent Registry Growth HicH 0S-SST-ADV-02

Description

In AgentRegistry, agent_Llist isa vector<String> stored on-chain, resultingin AgentRegistry
object to grow linearly with each new agent registration. An attacker may exploit this by registering a
large number of agents, inflating the object’s size until it reaches max_move_object_size . Once this
limit is hit, any further writes to the registry will fail, effectively freezing agent registration.

Remediation

Remove agent_1list since agentis already stored in a registry table.

Patch

Resolved in 59f6b5e.

© 2026 Otter Audits LLC. All Rights Reserved. 10/ 25

https://github.com/sui-sentinel/contracts/commit/59f6b5e91750d72874a4f28ca5cce94add6d0a54

Sui Sentinel Audit 03 — Findings

Failure to Timelock Cost and Agent Prompt Updates HiGH 0S-SST-ADV-03

Description

Both update_agent_prompt and update_agent_cost in sentinel allow the agent creator to make
immediate, unilateral changes after users have already committed funds.

update_agent_cost allows the creator to increase the cost per message instantly and without any upper
bound. After sufficient rewards accumulate, the creator may set an extremely high cost, preventing any
further interactions with the agent. This effectively bricks the agent, blocking attackers from competing to
claim the reward.

>_ contracts/app/sources/sentinel.move

public fun update_agent_cost(agent: &mut Agent, new_cost: u64, ctx: &TxContext) {
assert! (agent.creator == ctx.sender (), ENotAuthorized);
agent.cost_per_message = new_cost;

Similarly, update_agent_prompt allows the agent creator to modify the system prompt immediately
and without any delay. Because the system prompt directly influences how the agent responds, a creator
can wait until attackers have committed funds and then update the prompt to make the agent trivially
solvable or deterministically fail, ensuring the creator (or a colluding address) may win and extract the
accumulated rewards.

>_ contracts/app/sources/sentinel.move

public fun update_agent_prompt(agent: &mut Agent, new_prompt: String, ctx: &TxContext) {

assert! (agent.creator == ctx.sender (), ENotAuthorized);
agent.system_prompt = new_prompt;

Remediation

Enforce a timelock on cost updates and prompt updates in update_agent_cost and
update_agent_prompt , respectively. Also, add protocol-level bounds on cost_per_message in

update_agent_cost.

Patch
Resolved in 04f3adb and 432b8586.

© 2026 Otter Audits LLC. All Rights Reserved. 11/25

https://github.com/sui-sentinel/contracts/commit/04f3adbb5a672a66219385d680d3d507d7d8a278
https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd

Sui Sentinel Audit 03 — Findings

Absence of Signature Expiration Checks MEebium 0S-SST-ADV-04

Description

The contract accepts enclave signatures without enforcing any timestamp or expiry checks, allowing them
to remain valid indefinitely. Thus, a user may obtain a valid signature and delay submission until the agent
accumulates more funds. Once submitted, the stale signature still verifies and will drain newly added
rewards.

Remediation

Ensure signatures expire after a certain period of time.

Patch

Resolved in e8165ef.

© 2026 Otter Audits LLC. All Rights Reserved. 12 /25

https://github.com/sui-sentinel/contracts/commit/e8165efa7c0a2e5a0c8222441021ce9017b5c773

Sui Sentinel Audit 03 — Findings

Front-Running Agent Registration MEbiUM 0S-SST-ADV-05

Description

RegisterAgentResponse does notinclude the creator address, so the enclave’s signature is not bound

to a specific caller. Because the signed payload only includes agent_id, cost_per_message, and
system_prompt, any user may frontruna register_agent call and submittheir own register_agent
transaction utilizing the same fields to effectively steal the agent_id and become the agent's creator,
enabling them to update the prompt and the cost per message as they wish.

>_ contracts/app/sources/sentinel.move

public struct RegisterAgentResponse has copy, drop {
agent_1id: String,
cost_per_message: u64,
system_prompt: String,
is_defeated: bool

Remediation

Include the intended creator address in RegisterAgentResponse and verify thatit matches ctx.sender
during register_agent.

Patch

Resolved in 72e7e2d.

© 2026 Otter Audits LLC. All Rights Reserved. 13/25

https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f

Sui Sentinel Audit 03 — Findings

Potential to Bypass Withdrawal Lock Period Low 0S-SST-ADV-06

Description

When an agent is created, last_funded_timestamp is left at its default value (0) in register_agent
unless fund_agent is explicitly called. As a result, if the agent later receives funds through other flows

(for example, if someone submits a request for attack), the withdrawal logic in withdraw_from_agent
becomes unsafe.

>_ contracts/app/sources/sentinel.move

public fun register_agent<T>(
registry: &mut AgentRegistry,
agent_id: String,
[oool
enclave: &Enclave<T>,
ctx: &mut TxContext,

[...]

let agent = Agent {
id: object::new(ctx),
agent_id,
creator,
cost_per_message,
system_prompt,
balance: balance::zero(),
last_funded_timestamp: 0,

The function computes time_since_last_funding by subtracting the
agent.last_funded_timestamp from current_time to determine if it met the

WITHDRAWAL_LOCK_PERIOD_MS . However, with last_funded_timestamp = 0@ , this check trivially
passes. This allows the agent creator to immediately withdraw newly acquired funds, bypassing the
intended lock period.

Remediation

Initialize last_funded_timestamp to the current time (at which the registration is done) at agent
registration so that the withdrawal lock applies even before the first explicit funding.

Patch

Resolved in 72e7e2d.

© 2026 Otter Audits LLC. All Rights Reserved. 14 /25

https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f

Sui Sentinel Audit 03 — Findings

Unauthenticated Prompt in Events Low 0S-SST-ADV-07

Description

In the current flow, the enclave signature only covers the ConsumePromptResponse fields. The
prompt string is not validated, enabling an attacker to supply an arbitrary prompt value when calling

sentinel: :consume_prompt , which will consequently be emitted by the PromptConsumed event.
This compromises the integrity of the PromptConsumed event.

Remediation

Verify the correct prompt is supplied in consume_prompt .

Patch

Resolved in ae5d5ad.

© 2026 Otter Audits LLC. All Rights Reserved. 15/ 25

https://github.com/sui-sentinel/contracts/commit/ae5d5adde965c2468e1366e1f5bfb96421c4d516

Sui Sentinel Audit 03 — Findings

Unauthorized Capability Creation Risk Low 0S-SST-ADV-08

Description

enclave: :new_cap currently allows anyone with access to atype T to create a Cap<T> . Thisis

risky because the Cap object grants authority to create and modify EnclaveConfig and register
new enclaves. A malicious actor may re-utilize the same type T as a legitimate module to generate
unauthorized caps, enabling them to create enclave configurations or register enclaves without permission.

>_ contracts/enclave/sources/enclave.move

public fun new_cap<T: drop>(_: T, ctx: &mut TxContext): Cap<T> {

Cap {
id: object::new(ctx),

}

Remediation

Require a one-time witness from the module.

Patch

Resolved in 10ee5b7.

© 2026 Otter Audits LLC. All Rights Reserved. 16/ 25

https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292

Sui Sentinel Audit 03 — Findings

Improper Enclave Destruction Authorization Logic Low 0S-SST-ADV-09

Description

enclave: :destroy_old_enclave only checks that the supplied configuration has a higher version,
without verifying that the enclave was created from that configuration. Because multiple EnclaveConfig
objects may exist, an attacker may create a different configuration, increment its version, and utilize it to
destroy an unrelated enclave. This breaks configuration lineage and allows unauthorized enclave deletion.
Also, outdated enclaves may still be utilized and be deleted by anyone.

>_ contracts/enclave/sources/enclave.move

public fun destroy_old_enclave<T>(e: Enclave<T>, config: &EnclaveConfig<T>) {
assert! (e.config_version < config.version, EInvalidConfigVersion);

let Enclave { id, .. } = e;
id.delete();

Remediation

Bind each enclave to its creating configuration ID and verify it during destruction. Additionally, restrict
enclave destruction to the enclave owner.

Patch

Resolved in 10ee5b7.

© 2026 Otter Audits LLC. All Rights Reserved. 17/ 25

https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292

05 — General Findings

Here, we present a discussion of general findings identified during our audit. While these findings do not
pose an immediate security impact, they represent anti-patterns and may result in security issues in the

future.

0S-SST-SUG-00

0S-SST-SUG-01

0S-SST-SUG-02

Description

Recommendation to refactor the code to improve functionality and mitigate
potential issues.

Suggestions to ensure adherence to coding best practices for better clarity
and maintainability.

The codebase may be optimized by removing redundant logic, avoiding the
emission of unnecessary events, and reclaiming available storage rebates.

© 2026 Otter Audits LLC. All Rights Reserved. 18 /25

Sui Sentinel Audit 05 — General Findings

Code Refactoring 0S-SST-SUG-00

Description

1. Currently within sentinel, there are no length checks for the prompt and system_prompt
parameters. This may result in arbitrarily large prompt and system_prompt , enabling gas
griefing, oversized event emissions, and excessive payloads. Thus, it will be appropriate to add
length validation for prompt in consume_prompt, and for system_prompt in register_agent

and update_agent_prompt .

2. sentinel::request_attack utilizes tx_context::epoch which yields a low-entropy nonce
that is shared across all attacks within the same epoch. Since the epoch length is 1 day, switching
to sui::random will produce a high-entropy nonce, ensuring uniqueness, thereby improving
security.

>_ contracts/app/sources/sentinel.move

public fun request_attack([...]): Attack {
[...]

let nonce = tx_context::epoch(ctx);

[...1

3. Currently in sentinel::consume_prompt, PromptConsumed derives success indirectly from

(score > 95 || success) condition, which may diverge from the enclave's explicit verdict.
Utilize the success value that is passed in as an argument to consume_prompt .

Remediation

Incorporate the above refactors.

Patch

1. #1 resolved in 432b856.
2. #2 resolved in e8165ef.
3. #3 resolved in ae5d5ad and 432b856.

© 2026 Otter Audits LLC. All Rights Reserved. 19/ 25

https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd
https://github.com/sui-sentinel/contracts/commit/e8165efa7c0a2e5a0c8222441021ce9017b5c773
https://github.com/sui-sentinel/contracts/commit/ae5d5adde965c2468e1366e1f5bfb96421c4d516
https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd

Sui Sentinel Audit 05 — General Findings

Code Maturity 0S-SST-SUG-01

Description

1. The function name for enclave: :deploy_old_enclave_by_owner implies version-based safety
checks, but it allows the owner to delete the enclave unconditionally without verifying whether it is
outdated. Thus, it may be renamed to destroy_enclave_by_owner for clarity.

>_ contracts/enclave/sources/enclave.move

public fun deploy_old_enclave_by_owner<T>(e: Enclave<T>, ctx: &mut TxContext) {
assert! (e.owner == ctx.sender (), EInvalidOwner);

let Enclave { 1id, .. = e;
id.delete();

2. Utilize a configurable score threshold instead of hardcodingitto 95 in sentinel: :consume_prompt
to improve maintainability.

>_ contracts/app/sources/sentinel.move

public fun consume_prompt<T>([...]) {

[...1

if (score > 95 || success) {

let agent_balance = balance::value(&agent.balance);

3. Utilize an AgentCap to centralize authorization around a capability object rather than utilizing
Attack.admin field.

4. Add !is_withdrawal_unlocked in request_attack to prevent a useless request.

Remediation

Implement the above -mentioned suggestions.

© 2026 Otter Audits LLC. All Rights Reserved. 20/ 25

Sui Sentinel Audit 05 — General Findings

Patch

1. #1 resolved in 10eeS5Sb7.
2. #2 resolved in ae5d5ad.
3. #3 resolved in 72e7e2d.
4. #4 resolved in 4b53f75.

© 2026 Otter Audits LLC. All Rights Reserved. 21/25

https://github.com/sui-sentinel/contracts/commit/10ee5b76e31198ca9bb2e36e769095c213b90292
https://github.com/sui-sentinel/contracts/commit/ae5d5adde965c2468e1366e1f5bfb96421c4d516
https://github.com/sui-sentinel/contracts/commit/72e7e2d19cffe60fb54aeb38a3cd333c2207d00f
https://github.com/sui-sentinel/contracts/commit/4b53f756408b2150ac8ef800bae4d06f2165792c

Sui Sentinel Audit 05 — General Findings

Code Optimization 0S-SST-SUG-02

Description

1. In sentinel::withdraw_from_agent , the logic for checking if 14 days have passed since
last funding may be replaced with an assertion check on 1is_withdrawal_unlocked to avoid
unnecessary code duplication.

>_ contracts/app/sources/sentinel.move

public fun withdraw_from_agent(
agent: &mut Agent,
amount: u64,
clock: &Clock,
ctx: &mut TxContext
): Coin<SUI> {
assert! (agent.creator == ctx.sender(), ENotAuthorized);
assert! (balance: :value(&agent.balance) >= amount, EInsufficientBalance);

let current_time = clock::timestamp_ms(clock) ;
let time_since_last_funding = current_time - agent.last_funded_timestamp;
assert!(
time_since_last_funding >= WITHDRAWAL_LOCK_PERIOD_MS,
EWithdrawallLocked

IE
[...1

2. After sentinel::consume_prompt completes, the Attack object has no further purpose and
should be destroyed instead of just marking it as utilized. Deleting it will reclaim the Sui storage
rebate and prevent unnecessary on-chain state growth.

3. Setter functions should first compare the new value against the current value before applying updates.
This avoids emitting meaningless events when no state change occurs.

4. Simplify the logic by storing only creator fee and protocol fee, and automatically sending the re-
maining amount to the agent, instead of storing all three values and performing additional remainder
calculations.

Remediation

Modify the codebase to include the above optimizations.

© 2026 Otter Audits LLC. All Rights Reserved. 22 /25

Sui Sentinel Audit 05 — General Findings

Patch

1. #1 resolved in 432b856.
2. #2 resolved in 432b856.
3. #3 resolved in 0a667ff.

4. #4 resolved in 550dc2c.

© 2026 Otter Audits LLC. All Rights Reserved. 23/25

https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd
https://github.com/sui-sentinel/contracts/commit/432b85676954c4787b9c1a07f1882d26bd5d83dd
https://github.com/sui-sentinel/contracts/commit/0a667ff0b800595109f1ce3186a940cd0ac51c3d
https://github.com/sui-sentinel/contracts/commit/550dc2c7fac6b83aa52523b8edfa1815465b832b

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

» Misconfigured authority or access control validation.
o Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

» Loss of funds requiring specific victim interactions.
+ Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

+ Computational limit exhaustion through malicious input.
o Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

o Explicit assertion of critical internal invariants.
* Improved input validation.

© 2026 Otter Audits LLC. All Rights Reserved. 24 | 25

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program'’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle
is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2026 Otter Audits LLC. All Rights Reserved. 25/ 25

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-SST-ADV-00 | Possibility to Utilize Arbitrary Enclaves
	[8.75em][l]OS-SST-ADV-01 | Extending Withdrawal Lock through Zero-Value Funding
	[8.75em][l]OS-SST-ADV-02 | Unbounded Agent Registry Growth
	[8.75em][l]OS-SST-ADV-03 | Failure to Timelock Cost and Agent Prompt Updates
	[8.75em][l]OS-SST-ADV-04 | Absence of Signature Expiration Checks
	[8.75em][l]OS-SST-ADV-05 | Front-Running Agent Registration
	[8.75em][l]OS-SST-ADV-06 | Potential to Bypass Withdrawal Lock Period
	[8.75em][l]OS-SST-ADV-07 | Unauthenticated Prompt in Events
	[8.75em][l]OS-SST-ADV-08 | Unauthorized Capability Creation Risk
	[8.75em][l]OS-SST-ADV-09 | Improper Enclave Destruction Authorization Logic

	General Findings
	[8.75em][l]OS-SST-SUG-00 | Code Refactoring
	[8.75em][l]OS-SST-SUG-01 | Code Maturity
	[8.75em][l]OS-SST-SUG-02 | Code Optimization

	Appendices
	Vulnerability Rating Scale
	Procedure

